Field-driven domain wall motion under a bias current in the creep and flow regimes in Pt/[CoSiB/Pt]N nanowires

نویسندگان

  • Y. H. Choi
  • Y. Yoshimura
  • K.-J. Kim
  • K. Lee
  • T. W. Kim
  • T. Ono
  • C.-Y. You
  • M. H. Jung
چکیده

The dynamics of magnetic domain wall (DW) in perpendicular magnetic anisotropy Pt/[CoSiB/Pt]N nanowires was studied by measuring the DW velocity under a magnetic field (H) and an electric current (J) in two extreme regimes of DW creep and flow. Two important findings are addressed. One is that the field-driven DW velocity increases with increasing N in the flow regime, whereas the trend is inverted in the creep regime. The other is that the sign of spin current-induced effective field is gradually reversed with increasing N in both DW creep and flow regimes. To reveal the underlying mechanism of new findings, we performed further experiment and micromagnetic simulation, from which we found that the observed phenomena can be explained by the combined effect of the DW anisotropy, Dzyaloshinskii-Moriya interaction, spin-Hall effect, and spin-transfer torques. Our results shed light on the mechanism of DW dynamics in novel amorphous PMA nanowires, so that this work may open a path to utilize the amorphous PMA in emerging DW-based spintronic devices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Creep and flow regimes of magnetic domain-wall motion in ultrathin Pt/Co/Pt films with perpendicular anisotropy.

We report on magnetic domain-wall velocity measurements in ultrathin Pt/Co(0.5-0.8 nm)/Pt films with perpendicular anisotropy over a large range of applied magnetic fields. The complete velocity-field characteristics are obtained, enabling an examination of the transition between thermally activated creep and viscous flow: motion regimes predicted from general theories for driven elastic interf...

متن کامل

Interfacial current-induced torques in Pt/Co/GdOx

Current-driven domain wall (DW) motion is investigated in Pt/Co/GdOx nanostrips with perpendicular magnetic anisotropy. Measurements of the propagation field and the energy barrier for thermally activated DW motion reveal a large current-induced torque equivalent to an out-of-plane magnetic field of 60 Oe per 10 A/m. This same field-to-current scaling is shown to hold in both the slow thermally...

متن کامل

Universality classes of magnetic domain wall motion.

We examine magnetic domain wall motion in metallic nanowires Pt-Co-Pt. Regardless of whether the motion is driven by either magnetic fields or current, all experimental data fall onto a single universal curve in the creep regime, implying that both the motions belong to the same universality class. This result is in contrast to the report on magnetic semiconductor (Ga,Mn)As exhibiting two diffe...

متن کامل

Velocity asymmetry of Dzyaloshinskii domain walls in the creep and flow regimes.

We have carried out measurements of domain wall dynamics in a Pt/Co/GdOx(t) wedge sample with perpendicular magnetic anisotropy. When driven by an easy-axis field Hz in the presence of an in-plane field Hx, the domain wall propagation is different along [Formula: see text]x, as expected for samples presenting Dzyaloshinskii-Moriya (DMI) interaction. In the creep regime, the sign and the value o...

متن کامل

Measuring and tailoring the Dzyaloshinskii-Moriya interaction in perpendicularly magnetized thin films

We investigate the Dzyaloshinskii-Moriya interactions (DMIs) in perpendicularly magnetized thin films of Pt/Co/Pt and Pt/Co/Ir/Pt. To study the effective DMI, arising at either side of the ferromagnet, we use a fielddriven domain wall creep-based method. The use of only magnetic field removes the possibility of mixing with current-related effects such as spin Hall effect or Rashba field, as wel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016